A THERMODYNAMIC STUDY OF THE COMPLEXATION REACTION OF BERYLLIUM(U), MAGNESIUM(U) AND CALCIUM(H) WITH 3-HYDROXY-2-NAPHTHOIC ACID

R. S. SANDHU AND KANWALJIT SINGH

Department af Chemisny. Guru Nanak Dev Unicersity, Amritsar 143005 (India) **(Raxiva3 8 April** *1976)*

ABSlRACT

The thermodynamic stability constants and thermodynamic parameters for the complexation reaction of Be²⁺, Mg²⁺ and Ca²⁺ with 3-hydroxy-2-naphthoic **acid have been determined pH metrically in** *a* **70% v/v dioxane-water medium in the presence of potassium nitrate. The study showed the formation 15 and 1:2 complexes** of Be^{2+} , Me^{2+} and 1:1 complex of Ca^{2+} with 3-hydroxy-2-naphthoic acid. The order of overall stability is $Be^{2+} > Mg^{2+} > Ca^{2+}$

INTRODUCTION

The complexes of 3-hydroxy-2-naphthoic acid with different metal ions have been studied by various workers underdifferent experimental conditions'-4. Recently, complexes of lanthanides with 3-hydroxy-2-naphthoic acid have been prepared in which coordination through oxygen of hydroxy group of the acid has been indicated^{5.6}. Mehrotra et al.⁶ and Makitie⁷ have reported the stability constants of Be²⁺ complex of 3-hydroxy-2-naphthoic acid in a 50% v/v ethanol-water medium. In the present study, the stability constants of Be^{2+} , Mg²⁺ and Ca²⁺ with 3-hydroxy-**2-naphthoic acid have been determined in a 70% V/v dioxane-water medium at** three temperatures and at an ionic strength of 0.05, 0.10 and 0.15M $KNO₃$. The **thermodynamic formation constants and thermodynamic parameters have been evaluated therefrom.**

EXPERIMENTAL

The pH titration technique of Calvin-Wilson⁸ as modified by Irving and Rossotti⁹ has been employed in the present investigation. All chemicals used were of **BDH AnalaR quality. Dioxane was purified by the method described by Vogel¹⁰.** The double-distilled $CO₂$ free water was used in all experimental work. A photovolt Digicord pH meter having a sensitivity of 0.002 was calibrated by suitable buffers **before use. The thermostat bath temperature was maintained at** 20 ± 0.1 **,** 30 ± 0.1 and $40+0.1$ °C and titrations were carried out in a 70% V/V dioxane-water mixture.

The three solutions were prepared as follows: A, 1.0×10^{-2} M HNO₃; B, 1.0×10^{-2} M HNO₃ + 5.0 × 10⁻²M ligand; C, 1.0×10^{-2} M HNO₃ + 5.0 × 10⁻²M

 I igand + $I.0 \times 10^{-2}$ M metal nitrate solution. An appropriate quantity of potassium **nitrate (2OM) was added to maintain the desired ionic strength of 0.05, 0.10 and 0.15M.** The initial volume of the solution was 50 ml in all cases. The above solutions **wee titrated against 0.15M KOH prepared in a** *70% Y/V dioxancwvater mixture.* In calculations, the concentrations were corrected for changes in volume produced by the addition of alkali during titration. The shapes of the curves were as usual.

RESULTS AND DISCUSSION

 $\bar{n}_{\rm H}$, \bar{n} , pL were calculated by employing the relationship derived by Irving and Rossotti⁹. The practical proton-ligand stability constant, \log ^{*p_{K^H2}} was obtained from*</sup> **the proton-ligand formation curve plotted between** \vec{n}_{H} **versus pH as Bjerrum halfintegral method and pointwise calculation method. In the case of 3-hydroxy-2** naphthoic acid, since there are few values of $\bar{n}_{\rm H}$ below one, the value of log ${}^{\rm P}K_1^{\rm H}$ was **obtained from the relationship**

 $\log {^P}K_1^H {^P}K_2^H = 2pH$ (at $\bar{n}_H = 1$).

The plots of \bar{n} versus pL for the complexes indicate that the values of \bar{n} obtained are of the order 2 in case of Be²⁺ and Mg^{2+} . This suggests that Be²⁺ and Mg²⁺ forms two types of complexes in the proportions 1:1 and 1:2 with the ligand. However, in the case of the Ca²⁺ complex the \bar{n} value remains less than 1 indicating the formation of a 1:1 complex only. Metal ligand stability constants $\log K_1$ and $\log K_2$ were calculated from the formation curves obtained by plotting graphs between \vec{n} and pL using Bjerrum half integral method, interpolation at various \bar{n} values and graphical **methodsi'as extended to the watex-dioxane mixtare by Van Uitcrt and Haasf2.** The values of log^PK^H₁, log^PK^H₂, log K_1 and log K_2 obtained by different methods agree fairly well and their average values are summarized in Table 1. The data show an increase in $\log K_1$ and $\log K_2$ values with the increase in temperature which indicate that higher temperatures are favourable for complex formation. The order of overall stability is $Be^{2+} > Me^{2+} > Ca^{2+}$ as expected from their electronic configuration. Since the charge to radius ratio decreases, the stability also decreases. This may be the reason for the formation of the 1:1 complex only in the case of Ca^{2+} . The stability decreases with an increase in ionic strength. The thermodynamic values **of stabiiIity constants were evaluated by extrapoIation to zero ionic concentration** from plots of $\log K$ versus $\sqrt{\mu}$ (Table 2). The calculated error in stability constant is ± 0.05 log K.

The values of overall changes in free energy (ΔG°) , enthalpy (ΔH°) and entropy **(AS?) accompanying OompIexation have been determined using the Gibbs-HeImoItz equation (Table 1). The values of** ΔG° **were obtained from the equation** $\Delta G^{\circ} =$ $-RT\ln \beta$. ΔH° was determined with the help of an isobar equation:

$$
\frac{\mathrm{d}\ln\beta}{\mathrm{d}(l/T)}=\frac{\Delta H^{\circ}}{RT^2}
$$

TABLE₁

PROTONATION CONSTANTS OF THE LIGAND, STEPWISE AND OVERALL METAL-LIGAND STABILITY CONSTANTS OF
THE COMPLEXES AND THERMODYNAMIC PARAMETERS AT THREE TEMPERATURES AND AT

 -327

STABILITY CONSTANTS OF 3-HYDROXY-2-NAPHTHOIC ACID AT 30°C

Ionic strength	$log K_a$	H^+	$Be2+$	Mg^{2+}	$Ca2+$
0.15M	log K _i	9.68	12.58	4.22	3.25
	log K ₂	212	7.56	3.87	
	$\log \beta_2$	11.80	20.14	8.09	-
0.10M	$log K_{\rm s}$	9.86	13.05	4.85	4.42
	$log K_2$	2.14	8.52	4.08	—
	$\log \beta_2$	12.00	21.57	8.93	
0.05M	$log K_1$	10.23	13.65	5.33	5.91
	$log K_2$	2.17	10.28	4.63	$\overline{}$
	$\log \beta_2$	12.40	23.93	9.96	--
\rightarrow O	$log K_{\rm x}$	10.98	15.09	6.88	9.40
	$log K_{z}$	2.21	13.83	5.65	
	$\log \beta_{2}$	13.24	29.00	12.50	

which may be rewritten as

$$
\frac{\mathrm{d}(\log \beta)}{\mathrm{d}(1/T)} = \frac{-\Delta H^{\circ}}{4.576}
$$

The values of log β obtained at different temperatures were plotted as a function of

 $1/T$. The gradient of the tangent drawn at 30 °C was determined and equated to $-\Delta H^{\circ}/4.576$. ΔH° was thus obtained. ΔS° was then evaluated from the relation:

$$
\Delta S^{\circ} = \frac{\Delta H^{\circ} - \Delta G^{\circ}}{T}
$$

The values of ΔG° and ΔH° are accurate to 1.5 kcal mol⁻¹ and ΔS° to \pm 5 cal mol⁻¹ deg⁻¹. The free energies of formation (ΔG°) of the complexes have more negative values with an increase in temperature showing that complex formation is a spontaneous process. The positive ΔH° values for the complexes indicate an endothermic reaction and explain why the formation constants have higher values at higher temperatures. The large entropy change (ΔS°) accompanying the complexation reaction is due to liberation of water molecules from the hydration sphere of the metal during complex formation.

REFERENCES

- 1 M. N. Desai, Curr. Sci., 34 (1965) 312.
- 2 S. L. Gupta and R. N. Soni, J. Indian Chem. Soc., 44 (1967) 195.
- 3 R. C. Sharma and J. P. Tandon, Moratsh. Chem., 106 (1975) 855.
- 4 S. S. Sandhu, J. N. Kumaria and R. S. Sandhu, Thermochim. Acta. 16 (1976) 246.
- 5 Y. H. Deshpande and U. R. Rao, J. Inorg. Nuel. Chem., 35 (1973) 3626.
- 6 R. P. Aggarwal and R. C. Mehrotra, J. Less Common Metals, 3 (1961) 398.
- 7 O. Makitie, Suom. Kemistil. B, 39 (1966) 26, 175.
- 8 M. Calvin and K. W. Wilson, J. Am. Chem. Soc., 67 (1945) 2003.
- 9 H. Irving and H. S. Rossotti, J. Chem. Soc., (1954) 2904.
- 10 A. I. Vogel, A Textbook of Practical Organic Chemistry, Longman, London, (1968).
- 11 H. Irving and H. S. Rossotti, J. Chem. Soc., (1953) 3397.
- 12 V. Uitert and L. G. Haas, J. Am. Chem. Soc., 75 (1953) 451.